New to DR.VEGAN? On your first order you receive your free refillable Pill Tin that
holds up to four different vitamins, travels anywhere with you, and helps reduce
unnecessary waste.
Cabral, CE. And Klein, M. (2017) Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular disease. Arg Bras Cardiol;109 (5) :475-482.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729784/
Shaghaghi M.A., Abumweis S.S. and Jones P.J. (2013) Cholesterol-lowering efficacy of plant sterols/stanols provided in capsule and tablet formats: Results of a systematic review and meta-analysis. Acad. Nutr. Diet; 113:1494–14503.https://pubmed.ncbi.nlm.nih.gov/24144075/
Banach, M. et al. (2022). Red yeast rice for dyslipidaemias and cardiovascular risk reduction: A position paper of the International Expert Panel. Pharmacol Res; 183:106370.https://pubmed.ncbi.nlm.nih.gov/35901940/
Cicero, AF. et al. (2018). Correction to: Effect of a short-term dietary supplementation with phytosterols, red yeast rice or both on lipid pattern in moderately hypercholesterolemic subjects: a three-arm, double-blind, randomized clinical trial. Nutr Metab (Lond); 15:44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011400/
Mannarino MR, Ministrini S. and Pirro M. (2014) Nutraceuticals for the treatment of hypercholesterolemia. Eur J Intern Med;25(7):592–599. https://pubmed.ncbi.nlm.nih.gov/24997485/
Martinez-Casas, L. Lage-Yusty, M. and Lopez-Hernandez, J. (2017) Changes in the Aromatic Profile, Sugars, and Bioactive Compounds When Purple Garlic Is Transformed into Black Garlic. J. Food Chem, 65, 10804–10811. https://pubs.acs.org/doi/abs/10.1021/acs.jafc.7b04423
Valls RM, et al. (2022). Effects of an Optimized Aged Garlic Extract on Cardiovascular Disease Risk Factors in Moderate Hypercholesterolemic Subjects: A Randomized, Crossover, Double-Blind, Sustained and Controlled Study. Nutrients;14(3):405. https://pubmed.ncbi.nlm.nih.gov/35276764/
Serrano, JCE. et al. (2023) Antihypertensive Effects of an Optimized Aged Garlic Extract in Subjects with Grade I Hypertension and Antihypertensive Drug Therapy: A Randomized, Triple-Blind Controlled Trial. Nutrients;15(17):3691. https://pubmed.ncbi.nlm.nih.gov/37686723/
Liu J. et al. (2018) Black Garlic Improves Heart Function in Patients With Coronary Heart Disease by Improving Circulating Antioxidant Levels. Physiol; 9:1435. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221913/
Angeles, TMM. et al. (2016) Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chem; 199:135-9. https://pubmed.ncbi.nlm.nih.gov/26775954/
Lu J, et al. (2023). Biochemical Composition, Antioxidant Activity and Antiproliferative Effects of Different Processed Garlic Products. Molecules ;28(2):804. https://pubmed.ncbi.nlm.nih.gov/36677862/
Hamal, S. et al. (2020). Short-term impact of aged garlic extracts on endothelial function in diabetes: A randomized, double-blind, placebo-controlled trial. Exp Ther Med;19(2):1485-1489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966134/
Li C., et al. (2021) Vasculoprotective effects of ginger (Zingiber officinale Roscoe) and underlying molecular mechanisms. Food Funct;12(5):1897-1913.https://pubmed.ncbi.nlm.nih.gov/33592084/
Semwal, RB. et al. (2015) Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry; 117:554-568. https://pubmed.ncbi.nlm.nih.gov/26228533/
Alizadeh-Navaei, R. et al. (2008) Investigation of the effect of ginger on the lipid levels. A double blind controlled clinical trial. Saudi Med J.;29 (9):1280-4. https://pubmed.ncbi.nlm.nih.gov/18813412/
Zhang, Z. et al. (2021) Evaluation of dietary niacin and new-onset hypertension among Chinese adults. JAMA Netw Open;4 (1) :e2031669. https://pubmed.ncbi.nlm.nih.gov/33404619/
Wang, L. et al. (2018). The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine (Baltimore);97(5): e9679. https://pubmed.ncbi.nlm.nih.gov/29384846/
Tian, Lei et al. (2022) Probiotic Characteristics of Lactiplantibacillus Plantarum N-1 and Its Cholesterol-Lowering Effect in Hypercholesterolemic Rats. Probiotics Antimicrob Proteins;14(2):337-348.https://pubmed.ncbi.nlm.nih.gov/35064922/
Sharma S, Kurpad AV. and Puri S. (2016) Potential of probiotics in hypercholesterolemia: A meta-analysis. Indian J Public Health;60(4):280-286.
Bosch M., et al (2014). Lactobacillus plantarum CECT 7527, 7528 and 7529: Probiotic candidates to reduce cholesterol levels. Sci. Food Agric; 94:803–809.
Mo, R. Zhang, X. and Yang, Y. (2019). Effect of probiotics on lipid profiles in hypercholesterolaemic adults: A meta-analysis of randomized controlled trials. Med Clin (Barc); 152(12):473-481. https://pubmed.ncbi.nlm.nih.gov/30467077/
Guerrero-Bonmatty R. et al. (2021). A Combination of Lactoplantibacillus plantarum Strains CECT7527, CECT7528, and CECT7529 Plus Monacolin K Reduces Blood Cholesterol: Results from a Randomized, Double-Blind, Placebo-Controlled Study. Nutrients;13(4):1206. https://pubmed.ncbi.nlm.nih.gov/33917503/
Mazza, A et al. (2018) Effect of monacolin K and co-q10 supplementation in hypertensive and hypercholesterolemic subjects with metabolic syndrome. Biomed Pharmacother;992-996. https://pubmed.ncbi.nlm.nih.gov/30021394/
Aaseth, J., Alexander,J. and Alehagen. U. (2021) Coenzyme Q10 supplementation – In ageing and disease. Mech Ageing Dev; 197:111521https://pubmed.ncbi.nlm.nih.gov/34129891/
Tarrahi M.J. et al. (2021) The effects of chromium supplementation on lipid profile in humans: A systematic review and meta-analysis of randomized controlled trials. Res; 164:105308. https://pubmed.ncbi.nlm.nih.gov/33197598/
Mahdi, G.S. (199) Chromium deficiency might contribute to insulin resistance, type 2 diabetes mellitus, dyslipidaemia, and atherosclerosis. Med., 13, 389–390. https://pubmed.ncbi.nlm.nih.gov/9162617/