HeartPro® How It Works References

  1. Vitasterol® S-80 https://www.vitaenaturals.com/en/phytosterols/
  2. Ras, R., Geleijnse, J. and Trautwein, E. (2014). LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. British Journal of Nutrition, 112(2), 214-219. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/ldlcholesterollowering-effect-of-plant-sterols-and-stanols-across-different-dose-ranges-a-metaanalysis-of-randomised-controlled-studies/E4EDEF178C21BAAED1E64035CD950E12
  3. Cabral, CE. And Klein, M. (2017) Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular disease. Arg Bras Cardiol;109 (5) :475-482.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729784/
  4. Shaghaghi M.A., Abumweis S.S. and Jones P.J. (2013) Cholesterol-lowering efficacy of plant sterols/stanols provided in capsule and tablet formats: Results of a systematic review and meta-analysis. Acad. Nutr. Diet; 113:1494–14503.https://pubmed.ncbi.nlm.nih.gov/24144075/
  5. Cheung, B. et al. (2023) Lipid-lowering nutraceuticals for an integrative approach to dyslipidemia. J.Clin Med;12 (10):3414. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219430/
  6. Banach, M. et al. (2022). Red yeast rice for dyslipidaemias and cardiovascular risk reduction: A position paper of the International Expert Panel. Pharmacol Res; 183:106370.https://pubmed.ncbi.nlm.nih.gov/35901940/
  7. US National Library of Medicine. Safety and Efficacy of Red Yeast Rice (Monascus purpureus) as an Alternative Therapy for Hyperlipidemia. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697909/
  8. Cicero, AF. et al. (2018). Correction to: Effect of a short-term dietary supplementation with phytosterols, red yeast rice or both on lipid pattern in moderately hypercholesterolemic subjects: a three-arm, double-blind, randomized clinical trial. Nutr Metab (Lond); 15:44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011400/
  9. Mannarino MR, Ministrini S. and Pirro M. (2014) Nutraceuticals for the treatment of hypercholesterolemia. Eur J Intern Med;25(7):592–599. https://pubmed.ncbi.nlm.nih.gov/24997485/
  10. Martinez-Casas, L. Lage-Yusty, M. and Lopez-Hernandez, J. (2017) Changes in the Aromatic Profile, Sugars, and Bioactive Compounds When Purple Garlic Is Transformed into Black Garlic. J. Food Chem, 65, 10804–10811. https://pubs.acs.org/doi/abs/10.1021/acs.jafc.7b04423
  11. Valls RM, et al. (2022). Effects of an Optimized Aged Garlic Extract on Cardiovascular Disease Risk Factors in Moderate Hypercholesterolemic Subjects: A Randomized, Crossover, Double-Blind, Sustained and Controlled Study. Nutrients;14(3):405. https://pubmed.ncbi.nlm.nih.gov/35276764/
  12. Serrano, JCE. et al. (2023) Antihypertensive Effects of an Optimized Aged Garlic Extract in Subjects with Grade I Hypertension and Antihypertensive Drug Therapy: A Randomized, Triple-Blind Controlled Trial. Nutrients;15(17):3691. https://pubmed.ncbi.nlm.nih.gov/37686723/
  13. Liu J. et al. (2018) Black Garlic Improves Heart Function in Patients With Coronary Heart Disease by Improving Circulating Antioxidant Levels. Physiol; 9:1435. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221913/
  14. Angeles, TMM. et al. (2016) Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chem; 199:135-9. https://pubmed.ncbi.nlm.nih.gov/26775954/
  15. Lu J, et al. (2023). Biochemical Composition, Antioxidant Activity and Antiproliferative Effects of Different Processed Garlic Products. Molecules ;28(2):804. https://pubmed.ncbi.nlm.nih.gov/36677862/
  16. Hamal, S. et al. (2020). Short-term impact of aged garlic extracts on endothelial function in diabetes: A randomized, double-blind, placebo-controlled trial. Exp Ther Med;19(2):1485-1489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966134/
  17. On hold health claims (add reference)
  18. Great Britain nutrition and health claims register https://www.gov.uk/government/publications/great-britain-nutrition-and-health-claims-nhc-register
  19. Li C., et al. (2021) Vasculoprotective effects of ginger (Zingiber officinale Roscoe) and underlying molecular mechanisms. Food Funct;12(5):1897-1913.https://pubmed.ncbi.nlm.nih.gov/33592084/
  20. Semwal, RB. et al. (2015) Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry; 117:554-568. https://pubmed.ncbi.nlm.nih.gov/26228533/
  21. Alizadeh-Navaei, R. et al. (2008) Investigation of the effect of ginger on the lipid levels. A double blind controlled clinical trial. Saudi Med J.;29 (9):1280-4. https://pubmed.ncbi.nlm.nih.gov/18813412/
  22. Fakhri, S. et al. (2021) Ginger and Heart Health: From Mechanisms to Therapeutics. Curr Mol Pharmacol; 14 (6):943-959. https://pubmed.ncbi.nlm.nih.gov/33297926/
  23. Gordon, SM. et al. (2020) Effect of niacin monotherapy on high density lipoprotein composition and function. Lipids in Health and Disease;19 (190). https://lipidworld.biomedcentral.com/articles/10.1186/s12944-020-01350-3#citeas
  24. Vaijinath S. Kamanna. and Moti L. Kashyap. (2008) Mechanism of Action of Niacin, The American Journal of Cardiology. 101 (8): pages S20-S26. https://www.sciencedirect.com/science/article/abs/pii/S0002914908002531.
  25. Zhang, Z. et al. (2021) Evaluation of dietary niacin and new-onset hypertension among Chinese adults. JAMA Netw Open;4 (1) :e2031669. https://pubmed.ncbi.nlm.nih.gov/33404619/
  26. Wang, L. et al. (2018). The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine (Baltimore);97(5): e9679. https://pubmed.ncbi.nlm.nih.gov/29384846/
  27. Fuentes M.C. et al (2016) A randomized clinical trial evaluating a proprietary mixture of Lactobacillus plantarum strains for lowering cholesterol. Mediterranean Nutr. Metab; 9:125–135. https://content.iospress.com/articles/mediterranean-journal-of-nutrition-and-metabolism/mnm0065
  28. Le Roy T., et al. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol; 17:94.https://pubmed.ncbi.nlm.nih.gov/31775890/
  29. Tian, Lei et al. (2022) Probiotic Characteristics of Lactiplantibacillus Plantarum N-1 and Its Cholesterol-Lowering Effect in Hypercholesterolemic Rats. Probiotics Antimicrob Proteins;14(2):337-348.https://pubmed.ncbi.nlm.nih.gov/35064922/
  30. Sharma S, Kurpad AV. and Puri S. (2016) Potential of probiotics in hypercholesterolemia: A meta-analysis. Indian J Public Health;60(4):280-286.
  31. Erratum in: Indian J Public Health. 2017 Jan-Mar;61(1):63 https://pubmed.ncbi.nlm.nih.gov/27976649/
  32. Bosch M., et al (2014). Lactobacillus plantarum CECT 7527, 7528 and 7529: Probiotic candidates to reduce cholesterol levels. Sci. Food Agric; 94:803–809.
  33. Mo, R. Zhang, X. and Yang, Y. (2019). Effect of probiotics on lipid profiles in hypercholesterolaemic adults: A meta-analysis of randomized controlled trials. Med Clin (Barc); 152(12):473-481. https://pubmed.ncbi.nlm.nih.gov/30467077/
  34. Guerrero-Bonmatty R. et al. (2021). A Combination of Lactoplantibacillus plantarum Strains CECT7527, CECT7528, and CECT7529 Plus Monacolin K Reduces Blood Cholesterol: Results from a Randomized, Double-Blind, Placebo-Controlled Study. Nutrients;13(4):1206. https://pubmed.ncbi.nlm.nih.gov/33917503/
  35. Larijani VN et al. (2013) Beneficial effects of aged garlic extract and coenzyme Q10 on vascular elasticity and endothelial function: the FAITH randomized clinical trial. Nutrition;29(1):71–75. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277702/ UPDATED paper [Accessed September 2023] https://www.sciencedirect.com/science/article/abs/pii/S0899900712001402?via%3Dihub
  36. Mazza, A et al. (2018) Effect of monacolin K and co-q10 supplementation in hypertensive and hypercholesterolemic subjects with metabolic syndrome. Biomed Pharmacother;992-996. https://pubmed.ncbi.nlm.nih.gov/30021394/
  37. Aaseth, J., Alexander,J. and Alehagen. U. (2021) Coenzyme Q10 supplementation – In ageing and disease. Mech Ageing Dev; 197:111521https://pubmed.ncbi.nlm.nih.gov/34129891/
  38. Tarrahi M.J. et al. (2021) The effects of chromium supplementation on lipid profile in humans: A systematic review and meta-analysis of randomized controlled trials. Res; 164:105308. https://pubmed.ncbi.nlm.nih.gov/33197598/
  39. Mahdi, G.S. (199) Chromium deficiency might contribute to insulin resistance, type 2 diabetes mellitus, dyslipidaemia, and atherosclerosis. Med., 13, 389–390. https://pubmed.ncbi.nlm.nih.gov/9162617/